
DII.3200.NT40.PG-1

Defense Information Infrastructure (DII)

Common Operating Environment (COE)

Version 3.2.0.0

Programming Guide

(Windows NT 4.0)

June 13, 1997

Prepared for:

Defense Information Systems Agency

Prepared by:

Inter-National Research Institute (INRI)
12200 Sunrise Valley Drive, Suite 300

Reston, Virginia 20191

DII.3200.NT40.PG-1

June 13, 1997 i

Table of Contents

Preface . 1

1. Writing Programs Using the COE Tools . 3
1.1 Overview . 3
1.2 Referenced Documents . 3

2. Application Development Overview . 5
2.1 Writing Your Application with the DII COE APIs . 5
2.2 Building Your Application with the DII COE APIs . 5
2.3 Running Your Application . 5

3. Segment Development . 7
3.1 Segment Layouts . 7
3.2 Running the COE Tools From the Command Line . 8
3.2.1 COEInstaller Runtime Tool . 9
3.2.2 COE Developer Tools . 9
3.2.2.1 CalcSpace . 10
3.2.2.2 CanInstall . 11
3.2.2.3 MakeInstall . 12
3.2.2.4 TestInstall . 14
3.2.2.5 TestRemove . 15
3.2.2.6 TimeStamp . 16
3.2.2.7 VerifySeg . 17
3.2.2.8 VerUpdate . 18
3.3 Building Your Segment . 19
3.3.1 Identifying and Creating Required Subdirectories . 19
3.3.2 Creating and Modifying Required Segment Descriptor Files 19
3.3.3 Installing a Segment . 21
3.4 Customizing Your Segment . 22
3.4.1 Adding Menu Items . 22
3.4.2 Adding Icons . 29
3.4.3 Reserving a Socket . 30
3.4.4 Displaying a Message . 31

DII.3200.NT40.PG-1

June 13, 1997ii

Appendix A - Sample Segment Layout . 33
A.1 Sample Account Group Segment Layout . 33
A.2 Sample Software Segment Layout . 35

Appendix B - Verifying Segment Syntax and Loading a Segment onto a Floppy Diskette 37
B.1 Running VerifySeg Against the Sample Segment . 38
B.2 Running TestInstall Against the Sample Segment . 38
B.3 Running TestRemove Against the Sample Segment . 39
B.4 Running MakeInstall Against the Sample Segment . 39

List of Tables

Table 1. Segment Descriptor Files . 20
Table 2. SegInfo Segment Descriptor Sections . 21

List of Figures

Figure 1. Segment Directory Structure . 7

DII.3200.NT40.PG-1

June 13, 1997 1

Preface

The following conventions have been used in this document:

[HELVETICA FONT] Used to indicate keys to be pressed. For example, press
[RETURN].

Courier Font Used to indicate entries to be typed at the keyboard, operating
system commands, titles of windows and dialog boxes, file and
directory names, and screen text. For example, execute the
following command:

A:\setup.exe

Italics Used for emphasis.

DII.3200.NT40.PG-1

June 13, 19972

This page intentionally left blank.

DII.3200.NT40.PG-1

June 13, 1997 3

1. Writing Programs Using the COE Tools

1.1 Overview

This document provides an introduction to the capabilities of the Defense Information
Infrastructure (DII) Common Operating Environment (COE) Version 3.2.0.0 tools for the
Windows NT Operating System Version 4.0. These tools consist of a set of runtime tools and a
set of developer's tools.

This document has been designed to help developers start using the DII COE tools. This
document explains the basic use of the tools, regardless of whether they are run from a menu or
from the command line. The document consists of the following sections and appendices:

Section/Appendix Page

Application Development Overview
Provides an overview of how to write, build, and run an application.

5

Segment Development
Discusses the different types of segments and the process of segment creation.

7

Sample Segment Layout
Describes how to install sample segments, which can be used to test segment installation and
execution.

35

Verifying Segment Syntax and Loading a Segment onto a Floppy Diskette
Provides examples of how to convert a segment to the DII COE Integration and Runtime
Specification segment format, verify segment syntax, temporarily install and remove a segment,
and load a segment onto an installation floppy diskette.

39

1.2 Referenced Documents

The following documents are referenced in this guide:

C DII COE I&RTS:Rev 3.0, Defense Information Infrastructure (DII) Common Operating
Environment (COE) Integration and Runtime Specification Version 3.0, January 1997

C DII.3200.NT40.RG-1, Defense Information Infrastructure (DII) Common Operating
Environment (COE) Version 3.2.0.0 Application Programmer Interface (API) Reference
Guide (Windows NT 4.0), June 13, 1997.

DII.3200.NT40.PG-1

June 13, 19974

This page intentionally left blank.

DII.3200.NT40.PG-1

June 13, 1997 5

2. Application Development Overview

Developers may require access to public Application Programmer Interfaces (APIs) to ensure an
application complies with the DII COE Integration and Runtime Specification. To use these
public APIs, developers must (1) include the public include files with the DII COE tools header
and (2) compile and link the application with the Developer's Toolkit include directory and
libraries. Public APIs are documented in the DII COE API Reference Guide (Windows NT 4.0).

2.1 Writing Your Application with the DII COE APIs

To access the DII COE tools through the provided APIs, you must include the following header
in your application:

#include <DIITools.h>

The standard location for the Developer's Toolkit header is:

DII_DEV\include

2.2 Building Your Application with the DII COE APIs

To build your application with the DII COE APIs, you must link your application with the
COECom.lib, COESeg.lib, COETools.lib, and COEUserPrompts.lib libraries, which are on the
DII COE Developer's Toolkit floppy diskettes.

The standard location for the Developer's Toolkit libraries is:

DII_DEV\libs

To compile the application, make sure the include file path in the compile environment includes
<local path>\DII_DEV\include. Also make sure the library (lib) path includes
<local path>\DII_DEV\libs.

2.3 Running Your Application

The DII COE provides the foundation and infrastructure in which one or more applications run.
To operate under the COE, applications must be formatted properly as segments. The segment is
the basic building block of the COE runtime environment. A segment is a collection of one or
more Computer Software Configuration Items (CSCIs) that are managed most conveniently as a
unit. Segments generally are defined to keep related CSCIs together so functionality easily may be
included or excluded. All applications must be put in the DII COE runtime environment segment
format to be installed onto a DII COE-compliant machine. Reference Section 4, Segment
Development, for more information about segment development.

DII.3200.NT40.PG-1

June 13, 19976

Once an application has been put in the proper segment format, the segment can be installed in a
disciplined way through instructions contained in files provided with each segment. These files are
called segment descriptor files and are contained in a special subdirectory, SegDescrip, which is
called the segment descriptor subdirectory. Installation tools process the segment descriptor files
to create a carefully controlled approach to adding or deleting segments to or from the system.

Once installed, your application can be invoked in the DII COE environment in two ways:
(1) running your application from a command shell window or (2) invoking your application from
an icon. The easiest way to test your application is to invoke it in a command shell window. This
gives you easy access to your application for debugging purposes and allows you to check any
diagnostic information your application is generating. Section 3.4, Customizing Your Segment,
describes how to set up your application to be invoked as a menu item or as an icon.

* Required for segments with published APIs
+ Required for segment submission
1 For Database segments only
2 Recommended location for source code during development,

Required location for source code delivered to DISA.

h

IntgNotes
VSOutput

Seg

ScriptsSegDescrip bindata *man *include *lib +Integ

TestSuite

1install 1DBS_files 2src

Icons Menus fonts app-defaultskeytab Help

DII.3200.NT40.PG-1

June 13, 1997 7

3. Segment Development

The following subsection discusses the different types of segments and the process of segment
creation. Reference Section 5.0, Runtime Environment, of the DII COE Integration and Runtime
Specification for a more detailed explanation of segments.

3.1 Segment Layouts

In the DII COE approach, each segment is assigned a unique, self-contained subdirectory.
DII COE compliance mandates specific subdirectories and files underneath a segment directory.
These subdirectories and files are shown in Figure 1. Six segment types exist: Account Group,
COTS (Commercial Off-the-Shelf), Data, Database, Software, and Patch. The precise
subdirectories and files required depend on the segment type. Some of the subdirectories shown in
Figure 1 are required only for segment submission and are not delivered to an operational site.

Figure 1. Segment Directory Structure

The following runtime subdirectories are normally required, depending on the segment type:
(1) SegDescrip, which is the directory containing segment descriptor files; (2) bin, which is the
directory containing executable programs for the segment; and (3) data, which is the
subdirectory containing static data items, such as menu items, that are unique to the segment, but
that will be the same for all users on all workstations.

DII.3200.NT40.PG-1

June 13, 19978

The SegDescrip directory is required for every segment because it contains the installation
instructions for the segment. A segment cannot modify files or resources outside its assigned
directory. Files outside a segment's directory are called community files. COE tools coordinate
modification of all community files at installation time. Reference Section 5.5, Segment
Descriptors, of the DII COE Integration and Runtime Specification for a detailed explanation of
SegDescrip files.

3.2 Running the COE Tools From the Command Line

The COE tools were constructed to aid developers in the creation and ultimate installation of
DII COE segments. All tools can be run from the command line.

This section provides a brief overview of running the COE tools from the command line. When
run from the command line, the tools are designed to run interactively and accept one or more
command line parameters.

The tools are used to communicate with the outside world in two ways. First, the tools use the
RETURN function to set the DOS status variable. The status RETURN value is set to 0 for normal
tool completion or to 255 if an error occurs. A status RETURN value greater than 0 but less than
255 indicates a completion code that is tool specific. The ERRORLEVEL function may be used to
examine a tool's exit status.

Second, the tools use stdin and stdout and thus support input and output redirection.
Redirecting stdin allows the tools to receive input from a file or from another program, while
redirecting stdout allows the tools to provide output to other programs.

NOTE: Redirecting stdin is not always convenient. The -R command line parameter allows a
tool to read input from a response file instead of from stdin.

For example, the following statement can be used to write the results of VerifySeg to a file:

VerifySeg -p d:\testsegs Seg1 > results.txt

DII.3200.NT40.PG-1

June 13, 1997 9

3.2.1 COEInstaller Runtime Tool

This section describes the COEInstaller tool, which is available at runtime. This executable is
delivered to the operational site and is located underneath the h\COE\bin directory.

USAGE
COEInstaller [flags]

USABLE FLAGS

-h, -H Display this help message.

-C <file> Read command line arguments from the named <file>.

-d Set the debug flag.

-v Show verbose messages while the tool runs.
-V Display the tool’s version number.

-w Suppress all warnings.

This tool displays a list of configuration definitions or segments that may be installed from floppy
diskette or disk (e.g., a network segment server). The status environment variable is set to 0 if
all requested segments were installed correctly or to -1 if any segment requested was not
installed. By default, this tool does not write any output to stdout. This tool writes information
to a status log that indicates installation progress, which segments have been installed, and other
information that might be useful to the site administrator.

3.2.2 COE Developer Tools

This section lists the COE tools that are available during development but that are not delivered to
operational sites. By default, these executables are located underneath the DII_DEV directory and
are distributed as part of the Developer’s Toolkit. These tools are not location sensitive and may
be moved to any directory desired for development. For example, if the toolkit is tarred to \h, the
path would be \h\DII_DEV.

All of the tools in this section are executed from a command line. MakeInstall is the only tool that
has a GUI interface.

DII.3200.NT40.PG-1

June 13, 199710

3.2.2.1 CalcSpace

USAGE
CalcSpace [flags] <segdir>

Where <segdir> is the home directory of the segment.

USABLE FLAGS

-h, -H Display this help message.
-p <path> Use <path> as the absolute path to the segment.
-v Show verbose messages while the tool runs and print the space

requirements for each top-level directory.
-V Display the tool’s version number.
-w Suppress all warnings.

This tool computes the amount of space (in K bytes) that a segment is using. The segment should
not be compressed in any way. The calculated value is written in the Hardware descriptor.
Warnings will be issued for directories that are found but not expected (e.g., include, src) or if
expected directories are missing (e.g., bin for a software segment). The total space calculated will
be printed to stdout. The reserve space portion of the Hardware descriptor is not affected nor
are any specified partitions. The status environment variable is set to 0 upon completion or to -1
if the segdir specified does not exist or does not appear to be a segment.

NOTE
<path> length and <segdir> length must be <= 256.

DII.3200.NT40.PG-1

June 13, 1997 11

3.2.2.2 CanInstall

USAGE
CanInstall [flags] <segdir>

Where <segdir> is the home directory of the segment.

USABLE FLAGS

-h, -H Display this help message.
-p <path> Use <path> as the absolute path to the segment.
-v Show verbose messages while the tool runs.
-V Display the tool’s version number.
-w Suppress all warnings.

This tool tests a segment to see if it can be installed. It performs the same tests that the
COEInstaller tool performs at installation time. To be installable, all required segments already
must be on the disk. In addition, the disk must not contain any conflicting segments. The status
environment variable is set to 0 if the segment can be installed or to -1 if the segment cannot be
installed. An error message is printed to indicate why a segment cannot be installed.

DII.3200.NT40.PG-1

June 13, 199712

3.2.2.3 MakeInstall

USAGE
MakeInstall [flags] <segname>

Where <segname> is a list of one or more segments to process.

USABLE FLAGS

-h, -H Display this help message.
-C <file> Read command line arguments from the named <file>.
-Cd <exe> <path> Use <exe> as the name of the executable that will check the segment

descriptor out of the repository and place it in the temporary location indicated
by absolute path name <path>. The location of the executable is determined
by the most recent occurrence of the -p flag.

-Co <exe> <path> Use <exe> as the name of the executable that will check the segment out of
the repository and place it in the temporary location indicated by the absolute
path name <path>. The location of the executable is determined by the most
recent occurrence of the -p flag.

-d on | off Specify whether to delete (-d on) or not to delete (-d off) segments
checked out of the repository when MakeInstall is completed.

-di <definitions> Use <definitions> as a list of one or more distribution definition files as
created by ConfigDef. The location of the distribution is determined by the
most recent occurrence of the -p flag. These distributions are not in a
repository. All of the segments that comprise the distribution must be located
by the -p flag or through the directory list in the $SEG_DIRS path
environment variable or else an error will be generated.

-dio <definitions> Use <definitions> as a list of one or more distribution definition files as
created by ConfigDef. The definitions are to be checked out of the repository
by the program provided by the -Co and -Cd flags. The segments that
comprise the distribution also must be included (via -s, -so, -S, or -So) or
an error will be generated.

-Di <files> Use <files> as a list of one or more files that contain a list of distribution
definitions to write to the output medium. The location of the file is
determined by the most recent occurrence of the -p flag, while the distribution
definitions are located by the $SEG_DIRS environment variable or by -p flags
in the list file. These distributions are not in a repository. All of the segments
that comprise the distribution must be located by the -p flag or through the
directory list in the $SEG_DIRS path environment variable or else an error
will be generated.

-Dio <files> Use <files> as a list of one or more files that contain a list of distribution
definitions to write to the output medium. The list of distribution definitions
are to be checked out of the repository specified by the -Co and -Cd flags. All
of the segments that comprise the variant also must be included (via -s, -so,
-S, or -So) or an error will be generated.

-f Echo segment names as they are processed (default is OFF).
-o <file> Use the disk as the output medium instead of floppy diskette.

DII.3200.NT40.PG-1

June 13, 1997 13

ot <files> Use <files> as a list of one or more segment files created by MakeInstall
with the -o flag. This flag writes files to the output medium in a format
suitable for installation by the COEInstaller tool.

-p <path> Use <path> to establish a path to segments, variants, and so forth.
-R <file> Use <file> to respond to questions from the tool.
-s <segs> Use <segs> as a list of one or more segments to write to the output medium.

The location of the segments is determined by most recent occurrence of the
-p flag. These segments are not in a repository.

-so <segs> Use <segs> as a list of one or more segments to write to the output medium.
The segments are to be checked out of the repository by the program provided
by the -Co and -Cd flags.

-S <files> Use <files> as a list of one or more files that contain a list of segments to
write to the output medium. The location of the files is determined by the most
recent occurrence of the -p flag. Segments are located under \h or as
determined by the -p flag within the file. These segments are not in a
repository.

-So <files> Use <files> as a list of one or more files that contain a list of segments to be
checked out of the repository specified by the -Co and -Cd flags.

-t <dev> Use <dev> as the output device (e.g., /dev/rmt/3m).
-T Read and display the floppy diskette’s table of contents.
-v Show verbose messages while the tool runs.
-V Display the tool’s version number.
-w Suppress all warnings.
-x Validate but do not actually create a floppy diskette.

This tool writes one or more segments to a floppy diskette and packages the segments for
distribution over the network. MakeInstall checks if VerifySeg has been run successfully on each
of the segments and aborts with an error if it has not. The status environment variable is set to
-1 if any errors occur and to 0 if the process is successful. Error messages are written to stdout
as appropriate.

NOTE
The flags -Cd, -Co, -dio, -Dio, -ot, -R, -so, -So, and -T are not currently supported.

NOTE
If no path is specified, /h will be used.

DII.3200.NT40.PG-1

June 13, 199714

3.2.2.4 TestInstall

USAGE
TestInstall [flags] <segment_list>

USABLE FLAGS

-h, -H Display this help message.
-C <file> Read command line arguments from the named <file>.

-e Echo descriptor contents as they are processed. Enabling this flag
thereby enables the -f flag.

-f Echo descriptor names as they are processed.
-p <path> Use <path> as the absolute path to the source directory.
-v Show verbose messages while the tool runs.
-V Display the tool’s version number.
-w Suppress all warnings.

This tool is used to temporarily install a segment that already resides on disk. It must be run when
no other COE processes are running. The reason for this restriction is that the tool may modify
COE files already in use with unpredictable results. VerifySeg must have been run before
TestInstall to make sure that the segment is valid.

This tool performs the same operations as the COEInstaller tool except that it does not need to
read the segment from floppy diskette (e.g., it is already on disk), and the segment may be in any
arbitrary location. This tool will establish a registry entry for the segment. The status
environment variable is set to 0 if the installation is successful or to -1 if the installation is not
successful. Error and status messages are written to stdout as required. The TestInstall tool must
be run as Administrator because it modifies files the user may not own.

DII.3200.NT40.PG-1

June 13, 1997 15

3.2.2.5 TestRemove

USAGE
TestRemove [flags] <segname>

Where <segname> is the name of the segment to be removed.

USABLE FLAGS

-h, -H Display this help message.
-C <file> Read command line arguments from the named <file>.
-e Echo descriptor contents as they are processed--enabling this flag

thereby enables the -f flag.
-f Echo descriptor names as they are processed.
-p <path> Use <path> as the source directory.
-v Show verbose messages while the tool runs.
-V Display the tool’s version number.
-w Suppress all warnings.

This tool is used to remove a segment that was installed by TestInstall. It must be run when no
other COE processes are running. The reason for this restriction is that the tool may modify COE
files already in use with unpredictable results. This tool removes the registry entry if one exists,
but it does not delete the segment from disk. The status environment variable is set to 0 if the
removal is successful or to -1 if the removal is not successful. Error and status messages are
written to stdout as required. The TestRemove tool must be run as Administrator because it
modifies files the user may not own.

NOTE
This tool is unconditional and should be used with great caution. It will remove a specified
segment even if other installed segments still depend on it.

DII.3200.NT40.PG-1

June 13, 199716

3.2.2.6 TimeStamp

USAGE
TimeStamp [flags] <segname>

USABLE FLAGS

-h, -H Display this help message.
-p <path> Use <path> to establish a path for subsequent file names.
-V Display the tool’s version number.

This tool puts the current time and date into the VERSION segment descriptor. It is intended to
assist the configuration process by allowing the time stamp to be updated just before running
VerifySeg and mkSubmitTar for the deliverable product. The status environment variable is set
to -1 if an error occurs (e.g., the VERSION segment descriptor is not found) or to 0 if the time
stamp is successful. TimeStamp should be run as the root user, although it is not mandatory. This
tool requires the user to have write permission to the segment against which the tool was
executed.

DII.3200.NT40.PG-1

June 13, 1997 17

3.2.2.7 VerifySeg

USAGE
VerifySeg [flags] <segdir> ...

Where <segdir> is the home directory of the segment to be verified.

USABLE FLAGS

-h, -H Display this help message.
-C <file> Read command line arguments from the named <file>.
-e Echo descriptor lines as they are processed.
-f Echo descriptor names as they are processed.
-o Identify obsolete usage in the segment.
-p <path> Use <path> to establish a path for subsequent file names.
-R <file> Use responses listed in <file> to answer questions.
-s <name> Only validate the descriptor <name>.
-t Print a table of required/optional descriptors.
-v Show verbose messages while the tool runs.
-V Display the tool’s version number.
-w Suppress all warnings.
-x <name> Display syntax for the descriptor <name>.

This tool is used to validate that a segment conforms to the rules for defining a segment. It uses
information in the SegDescrip subdirectory and must be run whenever the segment is modified.
This tool must be run for each segment. If the segment is an aggregate segment, it must be run on
each segment in the aggregate. The status environment variable is set to -1 if any errors occur or
to 0 if the validation is successful. Error and status messages are written to stdout as required.
VerifySeg should be run as Administrator, although it is not mandatory. This tool requires the
user to have write permission to the segment against which the tool was executed.

NOTE
The -p flag and <SegDir> can be specified more than once on the command line.

DII.3200.NT40.PG-1

June 13, 199718

3.2.2.8 VerUpdate

USAGE
VerUpdate [flags] <segname>

USABLE FLAGS

-h, -H Display this help message.
-V Display the tool’s version number.
-p <path> Use <path> to establish a path for subsequent file names.
-i <version> Use <version> as the version number to insert unconditionally.
-d <digit> Use <digit> to increment the digit specified by one in the version

number. For example, the version number <1.2.3.4>.
<digit> is 1 for the major release digit
<digit> is 2 for the minor release digit
<digit> is 3 for the maintenance release digit
<digit> is 4 for the developer digit

-ip <version> Use <version> as the patch version number to insert
unconditionally.

-ap Add path version number ‘P1' to the VERSION file if it does not
exist already.

-up Increment the patch version number by one if it exists.

This tool updates the segment version number, current time, and current date in the VERSION
descriptor. It is intended to assist the configuration process by allowing the version, current time,
and current date to be updated just before running VerifySeg and mkSubmitTar for the deliverable
product. The status environment variable is set to 0 if the version update is successful or to -1 if
an error occurs (e.g., the segment was not found). VerUpdate should be run as the root user,
although it is not mandatory. This tool requires the user to have write permission to the segment
against which the tool was executed.

NOTE
Command line parameters -ip, -ap, and -up may only be used one at a time.

DII.3200.NT40.PG-1

June 13, 1997 19

3.3 Building Your Segment

A segment must be built in a disciplined way using instructions contained in files provided with
each segment. These files are contained in a special directory, SegDescrip, which is the segment
descriptor subdirectory.

This section describes a process to turn an application into a segment so it can be a part of the DII
COE. As described earlier, a segment is a collection of one or more CSCIs most conveniently
managed as a unit.

3.3.1 Identifying and Creating Required Subdirectories

There are six segment types: Account Group, COTS, Data, Database, Software, and Patch. The
following subdirectories normally are required:

Subdirectory Description

SegDescrip Subdirectory containing segment descriptor files. This directory is always required for
every segment and contains the installation instructions for the segment. A segment is not
allowed to directly modify any files for resources it does not own; in other words, a
segment cannot modify files or resources outside an assigned directory. The DII COE
tools coordinate the modification of all community files at installation time.

bin Executable programs for the segment. These files can be the result of a compiled program
or as a result of shell scripts, depending on the type of the segment.

data Subdirectory for static data items, such as menu items, that are unique to the segment, but
that will be the same for all users on all workstations.

Reference Sections 5.0-5.5 of the DII COE Integration and Runtime Specification for a detailed
explanation of segment directory layout and a description of each SegDescrip file.

3.3.2 Creating and Modifying Required Segment Descriptor Files

Segment descriptor files are the key to providing seamless and coordinated systems integration
across all segments. Reference Table 1 to determine which descriptor files are required for each
segment type. For example, the AcctGrp segment requires ReleaseNotes, SegInfo, SegName,
and VERSION descriptor files in the SegDescrip directory, while the Patch segment requires the
PostInstall descriptor file in addition to the previously listed files. Some segment descriptor
information is provided in the files listed in Table 1.

NOTE: In Table 1, Aggregate and COE Comp are segment attributes that can be associated
with any type of segment.

File Grp COTS Data DB S/W Patch
Acct

DII.3200.NT40.PG-1

June 13, 199720

DEINSTALL O O O O O O

FileAttribs O O O O O O

Installed I I I I I I

PostInstall O O O O O R

PreInstall O O O O O O

PreMakeInst O O O O O O

ReleaseNotes R R R R R R

SegChecksum I I I I I I

SegInfo R R R R R R

SegName R R R R R R

Validated I I I I I I

VERSION R R R R R R

 R - Required O - Optional N - Not Applicable
 I - Created by Integrator or Installation Software

Table 1. Segment Descriptor Files

DII.3200.NT40.PG-1

June 13, 1997 21

Other segment descriptor information is arranged within subsections of the SegInfo file. As with
the descriptor files themselves, some subsections of the SegInfo file are required and others are
optional depending on the type of segment. Table 2 defines required and optional sections for
each segment type.

Section Grp COTS Data DB S/W Patch
Acct

AcctGroup R N N N N N

AppPaths O N N N O N

COEServices O O O O O O

Community O O O O O O

Comm.deinstall O O O O O O

Compat O O O O O N

Conflicts O O O O O O

Data N N R N N N

Database N N N R O O

Direct O O O O O O

FilesList O R O O O O

Hardware R R R R R R

Help O O O O O O

Icons R O N N O O

Menus R O N N O O

Network N N N N N N

Permissions O N N N O O

Processes O O N N O O

Registry O O O O O O

Requires O O O O O O

Security R R R R R R

SharedFile O O N N O O

 R - Required O - Optional N - Not Applicable

Table 2. SegInfo Segment Descriptor Sections

DII.3200.NT40.PG-1

June 13, 199722

3.3.3 Installing a Segment

Follow the procedures below to install a segment after it has been created.

Run VerifySeg

The VerifySeg tool must be run during the development phase to ensure segments use segment
descriptor files properly. Run the VerifySeg tool whenever a segment is created or modified.
When VerifySeg is run to verify a segment, a Validated file is created. Reference
Section 3.2.2.9, VerifySeg, for further information about using VerifySeg.

Run TestInstall

Executing the TestInstall tool is not a mandatory step in the installation process, but it is
recommended. TestInstall simulates an installation of a segment on the developer's workstation
before actual installation. Reference Section 3.2.2.6, TestInstall, for further information about
using TestInstall.

Run TestRemove

Executing the TestRemove tool is not a mandatory step in the installation process, but it is
recommended. TestRemove simulates a deinstallation of a segment on the developer's workstation
after TestInstall has been run. Reference Section 3.2.2.7, TestRemove, for further information
about using TestRemove.

Run MakeInstall

The MakeInstall tool is used to write one or more segments to an installation media and to
package the segment(s) for distribution. MakeInstall checks if VerifySeg has been run successfully
on each of the segments and aborts with an error if it has not. Reference Section 3.2.2.4,
MakeInstall, for further information about using MakeInstall.

Run COEInstaller

The COEInstaller tool installs a segment from floppy diskette. Reference Section 3.2.1,
COEInstaller Runtime Tool, for further information about using COEInstaller.

DII.3200.NT40.PG-1

June 13, 1997 23

3.4 Customizing Your Segment

Most properly designed segments will not require any extensions to the COE, although the
segments may need to add menu items and icons. Some segments may need to add special
extensions. The following subsections describe how to add menu items, icons, and special
extensions.

3.4.1 Adding Menu Items

Menu files are maintained by the DII COE, but no DII COE applications read menu files in this
release. Nevertheless, user programs may use their own menu files through this feature.

Menu Entry Format

The Menu Descriptor in the SegInfo file is used to specify the name of the segment’s menu file
and the name of the affected segment’s menu file.

The menu bar, pull-down menus, and cascade menus, as well as the menu items they contain, are
built according to the menu description entries. The format of the entries is in ASCII with
colon-separated fields. Colons are used as delimiters, and spaces are allowed in the fields. Each
line ends in a colon with no extra data. A # symbol in the first column of a line denotes a
comment line. Comment entries may be placed anywhere in the entry and are not processed by the
parser.

Valid keywords are PDMENU, PDMENUEND, ITEM, PRMENU, CASCADE, CASCADEEND, APPEND,
APPENDEND, and SEPARATOR. Since the Menu Description Entry is based on your menu design,
you might not use of all of these keywords. For example, if your menu does not have separator
lines, your Menu Description Entry will not contain a SEPARATOR keyword.

Each keyword is described in the following paragraphs.

A PDMENU line contains the following elements:

PDMENU: name : enable flag : id # :

PDMENU Keyword that indicates the start of a pull-down menu.

name Text used to name the menu. The menu name is displayed on the menu
bar.

enable flag Integer value that indicates whether a menu is enabled or disabled. The
enable flag is 1 if a menu is enabled or 0 if it is disabled. A disabled
menu means that no options under that pull-down menu can be selected.

DII.3200.NT40.PG-1

June 13, 199724

id# Optional integer value that provides a unique ID number for the menu.
The PDMENU id# value must be unique within the menu description file.
An absolute value may be provided. However, the id# field should be
left empty so that relative numbering is used by default.

With relative numbering, an id# of R1 (or leaving the field blank) sets the
menu's ID number to 1 plus the id# of the last menu processed. An id#
of R2 sets the menu's ID number to 2 plus the id# of the last menu
processed.

The following is an example of a PDMENU line:

PDMENU: Map Options : 1 : R1 :

A PDMENUEND line contains the following element:

PDMENUEND:

PDMENUEND Optional keyword that indicates the end of a group of pull-down menu
items. If PDMENUEND is not used to delimit a group of menu items, the
group is presumed to end when the next keyword (other than ITEM or
PRMENU) is encountered.

The following is an example of a PDMENUEND line:

PDMENUEND:

An ITEM line contains the following elements:

ITEM: name : command : execution type : enable flag : # instances : id# :
check value : security char : autolog flag : print flag : disk flag :

ITEM Keyword that indicates a menu item description line.

name Text used to name the menu item. The item name is displayed in the
pull-down menu.

command Program with space-separated arguments that is launched if the menu
item type is a program. Otherwise, the menu item is called as an
application callback. Because callback functions must be linked into the
same executable as the menu bar, applications cannot use callbacks when
adding items to the system menu bar.

DII.3200.NT40.PG-1

June 13, 1997 25

execution
type

Integer value that indicates how to execute a command, as follows:

1 = executable program
2 = void callback function with no parameters (not yet

implemented)
3 = Motif callback function (not yet implemented).

enable flag Integer value that indicates if a menu item is enabled or disabled. The
enable flag is 1 if a menu item is enabled or 0 if it is disabled. A disabled
menu item means that the option cannot be selected.

instances Integer value used to set the maximum number of times the item can be
executed simultaneously.

id# Optional integer value that provides a unique ID number for the menu
item. Each ITEM id# entry must be unique within a PDMENU listing. (ITEM
entries in a PRMENU must be unique within that PRMENU.) Reference the
id# description under the PDMENU keyword listing.

check value Optional integer value that sets the star and checks annotations of a menu
item. Possible values are:

0 = no annotation (default)
1 = visible check mark
2 = check mark, but not visible
3 = visible star
4 = star member, but not visible.

This element is not yet fully implemented.

security
char

Optional character value used to determine the lowest security level
under which a menu item can be classified. Valid settings are:

N = No Classification
U = Unclassified (default)
C = Confidential
S = Secret
T = Top Secret.

autolog
flag

Optional character value, T or F, used to indicate if the command
should be logged automatically. This element is not yet fully
implemented.

print flag Optional character value, T or F, used to indicate if the command should
have a print capability. This element is not yet fully implemented.

DII.3200.NT40.PG-1

June 13, 199726

disk flag Optional character value, T or F, used to indicate if the command should
have a disk access capability. This element is not yet fully implemented.

The following is an example of an ITEM line:

ITEM: Netscape : Netscape.. : 1 : 1 : 1 : R1 : 0 : T : F : F : F :

A PRMENU line contains the following elements:

PRMENU: name : enable flag : id# :

PRMENU Keyword that indicates a cascading menu button. It is used to mark
where a cascade menu is to be connected to an upper-level menu.

name Text used to name the cascade menu with which to connect. The PRMENU
name is displayed in the pull-down menu.

enable flag Integer value that indicates if a cascade menu is enabled or disabled. The
enable flag is 1 if a cascade menu is enabled or 0 if it is disabled. A
disabled cascade menu means that menu options on the cascade menu
cannot be selected.

id# Optional integer value that provides a unique ID number for the
cascading menu. Each PRMENU id# must be unique within a PDMENU
listing. Reference the id# entry under the PDMENU keyword listing.

The following is an example of a PRMENU line:

PRMENU: Software : 1 : R1 :

A CASCADE line contains the following element:

CASCADE: name :

CASCADE Keyword that indicates the start of a cascade menu. The cascade menu
connects to the PRMENU entry of the same name.

name Text used to name a cascade menu. The name is used to attach a cascade
menu to a cascading menu button. This name must be the same as the
name field in the PRMENU entry.

DII.3200.NT40.PG-1

June 13, 1997 27

The following is an example of a CASCADE line:

CASCADE: Software :

A CASCADEEND line contains the following element:

CASCADEEND:

CASCADEEND Optional keyword that indicates the end of a group of cascade menu items.
If CASCADEEND is not used to delimit a group of menu items, the group is
presumed to end when the next keyword (other than ITEM or PRMENU) is
encountered.

The following is an example of a CASCADEEND line:

CASCADEEND:

An APPEND line contains the following elements:

APPEND: name :

APPEND Keyword that indicates the start of a group of items to append to an
existing menu. The menu will be created if it does not already exist. The
group is appended to the PDMENU or CASCADE entry of the same name.

name Text used to select the menu to which a group of items is appended.

The following is an example of an APPEND line:

APPEND: Options :

An APPENDEND line contains the following element:

APPENDEND:

APPENDEND Optional keyword that indicates the end of a group of menu items to be
appended to an existing menu. If APPENDEND is not used to delimit a group
of menu items, the group is presumed to end when the next keyword (other
than ITEM or PRMENU) is encountered.

The following is an example of an APPENDEND line:

APPENDEND:

DII.3200.NT40.PG-1

June 13, 199728

A SEPARATOR line contains the following element:

SEPARATOR:

SEPARATOR Optional keyword that indicates that a Motif separator widget is to be
placed in a menu at the point where the keyword occurs.

The following is an example of a SEPARATOR line:

SEPARATOR:

Example of Adding a Menu Item

To add menu items, include the Menus Descriptor in the SegInfo Segment Descriptor file.
Specify the Menu file you use wish to load and the Menu file you wish to update. The Menu file you
wish to load should be located in the TstSeg\data\Menu directory, assuming the segment name
is TstSeg. The following example will add the Test Program menu item to the Software menu
under the SysAdm account group.

The program TSTCOEAskUser_example will be executed when invoked through the menu item:

SegInfo (menu descriptor only)

[Menus]
TstSegMenu:SA_Default.main
TstSegMenu
#--------------------
Software Menu Items
#--------------------
APPEND :Software
ITEM :Test Program :TSTCOEAskUser_example:1:1:1:R1
APPENDEND :

The $SEGMENT keyword must be used in the SegName Segment Descriptor file to specify the name
of the affected segment. In this case it is System Administration.

SegName

#
SegName For Test Segment
#
$TYPE:SOFTWARE
$NAME:Test Segment
$PREFIX:TST
$SEGMENT:System Administration:SA:/h/AcctGrps/SysAdm

DII.3200.NT40.PG-1

June 13, 1997 29

3.4.2 Adding Icons

Icon Entry Format

The Icon Description Entry contains information on all icon-based processes. The entry, or set of
entries, to be used is passed to the Program Manager.

Icons are built using the icon section in the SegInfo file. The entry is a specially formatted icon
description that has colon-separated fields. The colons are used as delimiters, and spaces are
allowed in the fields. Each line ends in a colon with no extra data. A # symbol in the first column
of a line denotes a comment line. Comment entries may be placed anywhere in the file and are not
processed by the parser.

The format of the icon entry is as follows:

ICON file : affected icon file

The affected icon file contains information about both the icon and the executable. The format of
the file is as follows:

Icon Name : Icon File : Executable File : Comments

Where Icon Name is the title placed next to the icon in the Programs menu, Icon File is the
icon image file, Executable File is the executable to be launched by the Program Manager, and
Comments is the comment line. The Icon File field is optional. If an Icon File is specified, the
file must be located in the segment's data\Icons directory. The Executable File must be
located in the segment's bin directory.

An example of an affected icon file is as follows:

Edit Profiles : EditProf.ico: EditProf.exe

Icons are added to a Programs menu group named for the account group to which they belong.

Example of Adding an Icon

To add an icon, include the Icons Descriptor in the SegInfo Segment Descriptor file. Specify the
icon file you wish to load. The icon file you wish to load should be located under the
TstSeg\data\Icons directory, assuming the segment directory is TstSeg. This example will add
the Test Program icon to the SysAdm account group. When invoked through the icon, the
program TSTCOEAskUser_example will be executed.

DII.3200.NT40.PG-1

June 13, 199730

SegInfo (icon descriptor only)

[Icons]
TstSegIcons:SA_Default

TstSegIcons

#--------------------
Software Icons
#--------------------
Test Program :TestProgramIcon:TSTCOEAskUser_example

The $SEGMENT keyword must be used in the SegName Segment Descriptor file to specify the name
of the affected segment. In this case it is System Administration.

SegName

#
SegName For Test Segment
#
$TYPE:SOFTWARE
$NAME:Test Segment
$PREFIX:TST
$SEGMENT:System Administration:SA:/h/AcctGrps/SysAdm

3.4.3 Reserving a Socket

To add a service, include the COEServices Descriptor in the SegInfo Segment Descriptor file.
Also include the $SERVICES keyword in the SegInfo Segment Descriptor file to specify the
service to be added. If the port number requested is already in use under another name, an error
will be generated.

NOTE: Port numbers in the range 2000-2999 are reserved for DII COE segments.

SegInfo (COEServices descriptor only)

[COEServices]
#
This is my service to add
#
$SERVICES
irc_ser:3001:upd

DII.3200.NT40.PG-1

June 13, 1997 31

3.4.4 Displaying a Message

This subsection shows an example of how to display a message during the PostInstall process.
Five runtime tools can be used to communicate with the user: COEAskUser, COEInstError,
COEMsg, COEPrompt, and COEPromptPasswd. These tools may be used to display information
to the user or to ask the user a question and, based on the result, perform different actions.

In this example, the user is asked questions using the COEAskUser runtime tool, which is
described in Appendix C, COE Tools, of the DII COE Integration and Runtime Specification.

rem ===
rem PostInstall script for Segment Tst
rem ===

echo "Performing PostInstall"

COEAskUser -B "RED LAN" "BLUE LAN" "Which LAN will you be connecting to?"

if ERRORLEVEL 1 goto RED

if ERRORLEVEL 0 goto BLUE

goto END:

:RED
echo "Connecting to RED LAN"
rem
rem Perform some action based user input
rem
goto END:

:BLUE
echo "Connecting to BLUE LAN"
rem
rem Perform some action based on user input
rem

:END
echo "Done with PostInstall"

DII.3200.NT40.PG-1

June 13, 199732

This page intentionally left blank.

DII.3200.NT40.PG-1

June 13, 1997 33

Appendix A - Sample Segment Layout

This appendix includes a segment layout for a sample Account Group segment (GCCS) and a
sample Software segment (Seg1). These basic templates of typical DII COE segments can be used
to test segment installation and execution.

NOTE: If you do not have the GCCS sample Account Group segment installed on your
machine, you will receive several warnings indicating that it must be installed before the Seg1
sample Software segment can be loaded.

The Seg1 sample Software segment will add the Seg1 Hello World icon to the GCCS Account
Group in the Programs menu. The program Seg1_HelloWorld.exe will be executed when
invoked through the icon.

Refer to Appendix B, Verifying Segment Syntax and Loading a Segment onto a Floppy Diskette,
for instructions on how to validate the Seg1 sample Software segment and load the segment onto
a floppy diskette.

A.1 Sample Account Group Segment Layout

The layout of the GCCS sample Account Group segment is:

gccs

SegDescrip
DEINSTALL.BAT
PostInstall.bat
ReleaseNotes
SegInfo
SegName
VERSION

The SegDescrip files contain the following:

DEINSTALL.BAT
REM ===
REM
REM DEINSTALL
REM
REM Routine to perform necessary actions when segment
REM is deinstalled.
REM
REM ===

DII.3200.NT40.PG-1

June 13, 199734

PostInstall.bat
REM ===
REM
REM PostInstall
REM
REM Routine to perform necessary actions after segment
REM has been loaded.
REM
REM ===

ReleaseNotes
This is a sample Account Group.
Other Segments will need to extend the environment
as they add their specific functionality
to the account group.

SegInfo
#==
#
Account Group SegInfo file.
#
#==

[AcctGroup]
GCCS Operator:350::1:GCCS:GCCS Default
$CLASSIF:UNCLASS

[Hardware]
$CPU:PC
$OPSYS:NT
$DISK:500
$MEMORY:100

[Security]
UNCLASS

SegName
#==
#
Account Group SegName file.
#
#==
$TYPE:ACCOUNT GROUP
$NAME:GCCS COE
$PREFIX:GCCS

VERSION
3.2.0.0:2/5/97

DII.3200.NT40.PG-1

June 13, 1997 35

A.2 Sample Software Segment Layout

The layout of the Seg1 sample Software segment is:

Seg1
bin

Seg1_HelloWorld.exe
data

Icons
TestIcons

SegDescrip
DEINSTALL.BAT
PostInstall.BAT
ReleaseNotes
SegInfo
SegName
VERSION

The SegDescrip files contain the following:

DEINSTALL
REM ===
REM
REM DEINSTALL
REM
REM Routine to perform necessary actions when Seg1
REM is deinstalled.
REM
REM ===

PostInstall.BAT
REM ===
REM
REM PostInstall
REM
REM Routine to perform necessary actions after Seg1 Test
REM Segment has been loaded.
REM
REM ===

ReleaseNotes
This is the Seg1 Test Segment.

DII.3200.NT40.PG-1

June 13, 199736

SegInfo
#==
#
DII Database Admin Segment SegInfo
Descriptor file.
#
#==
[Hardware]
$CPU:PC
$OPSYS:NT
$DISK:500
$MEMORY:100

[Icons]
TestIcons

[Security]
UNCLASS

SegName
#==
#
DII Seg1 Test Segment
Descriptor file.
#
#==
$TYPE:SOFTWARE
$NAME:Test Segment #1
$PREFIX:Seg1
$SEGMENT:GCCS COE:GCCS:/h/AcctGrps/GCCS

VERSION
3.2.0.0:10/15/96

The data\Icons file contains the following:

TestSegIcons
TstSegIcons
#--------------------
Software Icons
#--------------------
Test Program :TestProgramIcon.ico:TSTCOEAskUser_example

DII.3200.NT40.PG-1

June 13, 1997 37

Appendix B - Verifying Segment Syntax and Loading a
Segment onto a Floppy Diskette

This appendix provides examples of how to verify segment syntax, install a segment temporarily,
and load a segment onto an installation floppy diskette. The segment verification and loading
process involves the following steps:

STEP 1: Run the VerifySeg tool. Run VerifySeg to validate that the segment conforms to
the rules for defining a segment (i.e., to verify the segment syntax). Type the
following command to run VerifySeg:

VerifySeg -p [segment path] [segment directory]

STEP 2: Run the TestInstall tool. Run TestInstall against the sample segment to install the
segment temporarily. This step is optional; if you choose not to run TestInstall,
proceed to STEP 4. Type the following command to run TestInstall:

TestInstall -p [segment path] [segment directory]

STEP 3: Run the TestRemove tool. Run TestRemove against the sample segment to
remove the segment temporarily installed in STEP 2. Type the following command
to run TestRemove:

TestRemove -p [segment path] [segment directory]

STEP 4: Run the MakeInstall tool. Run MakeInstall to load the segment onto a floppy
diskette. Type the following command to run MakeInstall:

 MakeInstall -p [segment path] [segment directory]

After the segment is loaded onto a floppy diskette, it is ready to be installed using
the DII Installer icon from the System Administration group.

Subsections B.1-B.4 show how to perform these steps against the Seg1 sample Software
segment, which is described in Appendix A, Sample Segment Layout.

NOTE: In the following subsections, the VerifySeg, TestInstall, TestRemove, and MakeInstall
tools are being run against the Seg1 sample Software segment. The output of each command
will vary depending on the segment being converted. Note the following severity indicators:

(F) indicates a FATAL ERROR (D) indicates a DEBUG statement
(W) indicates a WARNING (V) indicates a VERBOSE statement
(E) indicates an ERROR (O) indicates an ECHO statement.

NOTE: In the following subsections, boldface text indicates information that the user must
input.

B.1 Running VerifySeg Against the Sample Segment

DII.3200.NT40.PG-1

June 13, 199738

**
VerifySeg -p \SampleSegs Seg1

Results of verification (/SampleSegs/Seg1) :
Totals

Errors: 0
Warnings: 0

**

B.2 Running TestInstall Against the Sample Segment

**
TestInstall -p \SampleSegs Seg1

TestInstall - Version 1.0.0.7

The following options have been selected:

Print warning messages.

Segments to be TestInstalled:

Segment: seg1 Path: P:\SampleSegs
*************WARNING*************
TestInstall may modify COE files already in use.
This may cause unpredictable results if COE processes are already running.
Make sure no other COE processes are running before using TestInstall.
Do you want to continue with the TestInstall? (y/n): y
Processing seg1

 Successfully ran preprocessor on segment seg1
No PreInstall script for segment seg1
Do you want to run PostInstall for Segment seg1? (y/n): y
REM ===
REM
REM PostInstall
REM
REM Routine to perform necessary actions after Seg1 Test
REM Segment has been loaded.
REM
REM ===
Successful Installation of seg1
**

DII.3200.NT40.PG-1

June 13, 1997 39

B.3 Running TestRemove Against the Sample Segment

TestRemove -p \SampleSegs Seg1
*************WARNING*************
TestRemove may modify COE files already in use.
This may cause unpredictable results if COE processes are already running.
Make sure there are no other COE processes running before using TestRemove.
Do you want to continue with the TestRemove? (y/n): y
SETTING P:\SampleSegs\Seg1 FOR INSTALL_DIR

REM ===
REM
REM DEINSTALL
REM
REM Routine to perform necessary actions when Seg1
REM is deinstalled.
REM
REM ===
**
Successful Removal of Seg1

B.4 Running MakeInstall Against the Sample Segment

The example below shows the three windows displayed by MakeInstall as it loads segments onto
a floppy diskette. The MakeInstall tool does not generate any command window output. The
Seg1 sample Software segment is used in the example. These windows should appear in the order
shown below.

**
MakeInstall -p d:\tmp Seg1

DII.3200.NT40.PG-1

June 13, 199740

